Monday	Tuesday	Wednesday	Thursday
What is the place value of the underlined digit? $6 \underline{5} 4,478 \quad 108,482$	Write 603,478 in each form. Word: Expanded:	Round 278,457 to the nearest... 100: 1,000: 10,000:	Compare the numbers using >, <, or $=$. $\begin{aligned} & 8,309,127 _8,409,127 \\ & 6,277,173 _6,277,169 \end{aligned}$
Find the Difference. $43,003-17,588$	A factory shipped 18,000 bracelets to South America and 14,322 to North America. How many bracelets did they ship in all?	Find the Difference. $42,045-7,263$	A factory shipped 23,476 bracelets to North America. 4,987 bracelets broke while being shipped. How many bracelets were left?
Find the quotient. $8,372 \div 5$	Find the greatest common factor (GCF) of 24 and 32.	Find the least common multiple of 3 and 5 .	Find the product. 489×34
A factory makes 875 chairs every hour. How many chairs will they make in 24 hours?	A baker needs to arrange 487 cookies on plates. Each plate can hold 8 cookies. How many plates will the baker need?	The Tennis Teams of Atlanta need to order tennis balls for the upcoming tournament. They will need 2,367 tennis balls. If each holds only 5 tennis balls, how many cans will they need to purchase?	Betsy is collecting coins. She has 25 quarters, 3 times as many nickels than quarters, and 2 times as many pennies than nickels. How many coins does Betsy have?

Monday	Tuesday	Wednesday	Thursday
What is the place value of the underlined digit? $6 \underline{54,478}$ ten thousands 108,482 hundreds	Write 603,478 in each form. Word: six hundred three thousand, four hundred seventy eight Expanded: 600,000+3,000+400+70+8	Round 278,457 to the nearest... $\begin{aligned} & 100: 278,500 \\ & 1,000: 278,000 \\ & 10,000: 280,000 \end{aligned}$	$\begin{gathered} \text { Compare the numbers using >, <, or }=. \\ 8,309,127<8,409,127 \\ 6,277,173>6,277,169 \end{gathered}$
Find the Difference. $\begin{aligned} & 43,003-17,588 \\ & 25,415 \end{aligned}$	A factory shipped 18,000 bracelets to South America and 14,322 to North America. How many bracelets did they ship in all? 32,322	Find the Difference. $\begin{aligned} & 42,045-7,263 \\ & 34,782 \end{aligned}$	A factory shipped 23,476 bracelets to North America. 4,987 bracelets broke while being shipped. How many bracelets were left? 18,489
Find the quotient. $\begin{aligned} & 8,372 \div 5 \\ & 1674^{\text {R2 }} \end{aligned}$	Find the greatest common factor (GCF) of 24 and 32.8	Find the least common multiple of 3 and 5.15	Find the product. $\begin{aligned} & 489 \times 34 \\ & 16,626 \end{aligned}$
A factory makes 875 chairs every hour. How many chairs will they make in 24 hours? $21,000$	A baker needs to arrange 487 cookies on plates. Each plate can hold 8 cookies. How many plates will the baker need? 61	The Tennis Teams of Atlanta need to order tennis balls for the upcoming tournament. They will need 2,367 tennis balls. If each holds only 5 tennis balls, how many cans will they need to purchase? 474	Betsy is collecting coins. She has 25 quarters, 3 times as many nickels than quarters, and 2 times as many pennies than nickels. How many coins does Betsy have? 250
Compare the fractions using $>,<$, or $=$. Draw the fractions $\frac{5}{7}<\frac{3}{4} \quad \frac{4}{7}<\frac{6}{10}$	Find an equivalent fraction for each fraction below. $\begin{array}{llll} \frac{3}{4} & \frac{6}{8} & \frac{4}{5} & \frac{8}{10} \end{array}$	Order the fractions from LEAST to GREATEST. $\begin{array}{lll} \frac{4}{7} & \frac{3}{5} & \frac{7}{8} \end{array}$	Find an equivalent fraction for each fraction below. $\begin{array}{llll} \frac{2}{7} & \frac{4}{14} & \frac{1}{10} & \frac{2}{20} \end{array}$

Decompose the fraction. $\frac{3}{5}=\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$	Decompose the fraction. $\begin{aligned} & \frac{9}{10}=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+ \\ & \frac{1}{10}+\frac{1}{10}+\frac{1}{10} \end{aligned}$	Decompose the fraction. $\frac{5}{7}=\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}$	Decompose the fraction. $\frac{3}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$
Draw a model to represent the mixed number.	Draw a model to represent the improper fraction. Use the model to rewrite the improper fraction as a mixed number. $1 \frac{2}{4}$	Draw a model to represent the improper fraction. Use the model to rewrite the improper fraction as a mixed number. $2 \frac{1}{3}$	Rewrite the improper fraction as a mixed number. $\frac{5}{4} \quad 1 \frac{1}{4} \quad \frac{8}{5} \quad 1 \frac{3}{5}$
Find the Difference. $\frac{8}{10}-\frac{3}{10}=\frac{5}{10}$	Find the Sum. $\frac{4}{6}+\frac{4}{6}=\frac{8}{6}=1 \frac{2}{6}$	Find the Difference.$\frac{5}{7}-\frac{4}{7}=\frac{1}{7}$	Find the Sum. $\frac{4}{5}+\frac{2}{5}=\frac{6}{5}=1 \frac{1}{5}$

